高温合金铸造(高温合金铸造工艺模拟仿真)

博主:adminadmin 2022-11-29 09:56:08 条评论
摘要:高温合金是什么,有什么用高温合金知识高温合金是在高温严酷的机械应力和氧化、腐蚀环境下应用的一类合金。随着科技事业的发展,高...

高温合金是什么,有什么用

高温合金铸造(高温合金铸造工艺模拟仿真)

高温合金知识

高温合金是在高温严酷的机械应力和氧化、腐蚀环境下应用的一类合金。随着科技事业的发展,高温合金逐渐形成六个较为完整的部分。

一、变形高温合金

变形高温合金是指可以进行热、冷变形加工,工作温度范围-253~1320℃,具有良好的力学性能和综合的强、韧性指标,具有较高的抗氧化、抗腐蚀性能的一类合金。按其热处理工艺可分为固溶强化型合金和时效强化型合金。

1、固溶强化型合金

使用温度范围为900~1300℃,最高抗氧化温度达1320℃。例如GH128合金,室温拉伸强度为850MPa、屈服强度为350MPa;1000℃拉伸强度为140MPa、延伸率为85%,1000℃、30MPa应力的持久寿命为200小时、延伸率40%。固溶合金一般用于制作航空、航天发动机燃烧室、机匣等部件。

2、时效强化型合金

使用温度为-253~950℃,一般用于制作航空、航天发动机的涡轮盘与叶片等结构件。制作涡轮盘的合金工作温度为-253~700℃,要求具有良好的高低温强度和抗疲劳性能。 例如:GH4169合金,在650℃的最高屈服强度达1000MPa;制作叶片的合金温度可达950℃,例如:GH220合金,950℃的拉伸强度为490MPa,940℃、200MPa的持久寿命大于40小时。

变形高温合金主要为航天、航空、核能、石油民用工业提供结构锻件、饼材、环件、棒材、板材、管材、带材和丝材。

二、铸造高温合金

铸造高温合金是指可以或只能用铸造方法成型零件的一类高温合金。其主要特点是:

1. 具有更宽的成分范围 由于可不必兼顾其变形加工性能,合金的设计可以集中考虑优化其使用性能。如对于镍基高温合金,可通过调整成分使’含量达60%或更高,从而在高达合金熔点85%的温度下,合金仍能保持优良性能。

2. 具有更广阔的应用领域 由于铸造方法具有的特殊优点,可根据零件的使用需要,设计、制造出近终形或无余量的具有任意复杂结构和形状的高温合金铸件。

根据铸造合金的使用温度,可以分为以下三类:

第一类:在-253~650℃使用的等轴晶铸造高温合金 这类合金在很大的范围温度内具有良好的综合性能,特别是在低温下能保持强度和塑性均不下降。如在航空、航天发动机上用量较大的K4169合金,其650℃拉伸强度为1000MPa、屈服强度850MPa、拉伸塑性15%;650℃,620MPa应力下的持久寿命为200小时。已用于制作航空发动机中的扩压器机匣及航天发动机中各种泵用复杂结构件等。

第二类:在650~950 ℃使用的等轴晶铸造高温合金 这类合金在高温下有较高的力学性能及抗热腐蚀性能。例如K419合金,950℃时,拉伸强度大于700MPa、拉伸塑性大于6%;950℃,200小时的持久强度极限大于230MPa。这类合金适于用做航空发动机涡轮叶片、导向叶片及整铸涡轮。

第三类: 在950~1100℃ 使用的定向凝固柱晶和单晶高温合金 这类合金在此温度范围内具有优良的综合性能和抗氧化、抗热腐蚀性能。例如DD402单晶合金,1100℃、130MPa的应力下持久寿命大于100小时。这是国内使用温度最高的涡轮叶片材料,适用于制作新型高性能发动机的一级涡轮叶片。

随着精密铸造工艺技术的不断提高,新的特殊工艺也不断出现。细晶铸造技术、定向凝固技术、复杂薄壁结构件的CA技术等都使铸造高温合金水平大大提高,应用范围不断提高。

三、粉末冶金高温合金

采用雾化高温合金粉末,经热等静压成型或热等静压后再经锻造成型的生产工艺制造出高温合金粉末的产品。采用粉末冶金工艺,由于粉末颗粒细小,冷却速度快,从而成分均匀,无宏观偏析,而且晶粒细小,热加工性能好,金属利用率高,成本低,尤其是合金的屈服强度和疲劳性能有较大的提高。

FGH95粉末冶金高温合金,650℃拉伸强度1500MPa;1034MPa应力下持久寿命大于50小时,是当前在650℃工作条件下强度水平最高的一种盘件粉末冶金高温合金。粉末冶金高温合金可以满足应力水平较高的发动机的使用要求,是高推重比发动机涡轮盘、压气机盘和涡轮挡板等高温部件的选择材料。

四、氧化物弥散强化(ODS)合金

是采用独特的机械合金化(MA)工艺,超细的(小于50nm)在高温下具有超稳定的氧化物弥散强化相均匀地分散于合金基体中,而形成的一种特殊的高温合金。其合金强度在接近合金本身熔点的条件下仍可维持,具有优良的高温蠕变性能、优越的高温抗氧化性能、抗碳、硫腐蚀性能。

目前已实现商业化生产的主要有三种ODS合金:

MA956合金 在氧化气氛下使用温度可达1350℃,居高温合金抗氧化、抗碳、硫腐蚀之首位。可用于航空发动机燃烧室内衬。

MA754合金 在氧化气氛下使用温度可达1250℃并保持相当高的高温强度、耐中碱玻璃腐蚀。现已用于制作航空发动机导向器蓖齿环和导向叶片。

MA6000合金 在1100℃拉伸强度为222MPa、屈服强度为192MPa;1100℃,1000小时持久强度为127MPa,居高温合金之首位,可用于航空发动机叶片。

五、金属间化合物高温材料

金属间化合物高温材料是近期研究开发的一类有重要应用前景的、轻比重高温材料。十几年来,对金属间化合物的基础性研究、合金设计、工艺流程的开发以及应用研究已经成熟,尤其在Ti-Al、Ni-Al和Fe-Al系材料的制备加工技术、韧化和强化、力学性能以及应用研究方面取得了令人瞩目的成就。

Ti3Al基合金(TAC-1),TiAl基合金(TAC-2)以及Ti2AlNb基合金具有低密度(3.8~5.8g/cm3)、高温高强度、高钢度以及优异的抗氧化、抗蠕变等优点,可以使结构件减重35~50%。 Ni3Al基合金,MX-246具有很好的耐腐蚀、耐磨损和耐气蚀性能,展示出极好的应用前景。Fe3Al基合金具有良好的抗氧化耐磨蚀性能,在中温(小于600℃)有较高强度,成本低,是一种可以部分取代不锈钢的新材料。

六、环境高温合金

在民用工业的很多领域,服役的构件材料都处于高温的腐蚀环境中。为满足市场需要,根据材料的使用环境,归类出系列高温合金。

1、 高温合金母合金系列

2、 抗腐蚀高温合金板、棒、丝、带、管及锻件

3、 高强度、耐腐蚀高温合金棒材、弹簧丝、焊丝、板、带材、锻件

4、 耐玻璃腐蚀系列产品

5、 环境耐蚀、硬表面耐磨高温合金系列

6、 特种精密铸造零件(叶片、增压涡轮、涡轮转子、导向器、仪表接头)

7、 玻棉生产用离心器、高温轴及辅件 8、 钢坯加热炉用钴基合金耐热垫块和滑轨

9、 阀门座圈

10、 铸造“U”形电阻带

11、 离心铸管系列

12、 纳米材料系列产品

13、 轻比重高温结构材料

14、 功能材料(膨胀合金、高温高弹性合金、恒弹性合金系列)

15、 生物医学材料系列产品

16、 电子工程用靶材系列产品

17、 动力装置喷嘴系列产品

18、 司太立合金耐磨片

19、 超高温抗氧化腐蚀炉辊、辐射管。

什么是高温合金?

高温合金

在 600~1200℃高温下能承受一定应力并具有抗氧化或抗腐蚀能力的合金。按基体元素主要可分为铁基高温合金、镍基高温合金和钴基高温合金。

高温合金主要牌号:

固溶强化型铁基合金:GH1015、GH1035、GH1040、GH1131、GH1140

时效硬化性铁基合金:GH2018、GH2036、GH2038、GH2130、GH2132、GH2135、GH2136、GH2302、GH2696

固溶强化型镍基合金:GH3030、GH3039、GH3044、GH3028、GH3128、GH3536、GH605,GH600

时效硬化型镍基合金:GH4033、GH4037、GH4043、GH4049、GH4133、GH4133B、GH4169、GH4145、GH4090

国外的高温合金叫包含inconel系列 incoloy系列 Hastelloy系列

一、变形高温合金

变形高温合金是指可以进行热、冷变形加工,工作温度范围-253~1320℃,具有良好的力学性能和综合的强、韧性指标,具有较高的抗氧化、抗腐蚀性能的一类合金。按其热处理工艺可分为固溶强化型合金和时效强化型合金。

1、固溶强化型合金

使用温度范围为900~1300℃,最高抗氧化温度达1320℃。例如GH128合金,室温拉伸强度为850MPa、屈服强度为350MPa;1000℃拉伸强度为140MPa、延伸率为85%,1000℃、30MPa应力的持久寿命为200小时、延伸率40%。固溶合金一般用于制作航空、航天发动机燃烧室、机匣等部件。

2、时效强化型合金

使用温度为-253~950℃,一般用于制作航空、航天发动机的涡轮盘与叶片等结构件。制作涡轮盘的合金工作温度为-253~700℃,要求具有良好的高低温强度和抗疲劳性能。 例如:GH4169合金,在650℃的最高屈服强度达1000MPa;制作叶片的合金温度可达950℃,例如:GH220合金,950℃的拉伸强度为490MPa,940℃、200MPa的持久寿命大于40小时。

变形高温合金主要为航天、航空、核能、石油民用工业提供结构锻件、饼材、环件、棒材、板材、管材、带材和丝材。

二、铸造高温合金

铸造高温合金是指可以或只能用铸造方法成型零件的一类高温合金。其主要特点是:

1. 具有更宽的成分范围 由于可不必兼顾其变形加工性能,合金的设计可以集中考虑优化其使用性能。如对于镍基高温合金,可通过调整成分使’含量达60%或更高,从而在高达合金熔点85%的温度下,合金仍能保持优良性能。

2. 具有更广阔的应用领域 由于铸造方法具有的特殊优点,可根据零件的使用需要,设计、制造出近终形或无余量的具有任意复杂结构和形状的高温合金铸件。

根据铸造合金的使用温度,可以分为以下三类:

第一类:在-253~650℃使用的等轴晶铸造高温合金 这类合金在很大的范围温度内具有良好的综合性能,特别是在低温下能保持强度和塑性均不下降。如在航空、航天发动机上用量较大的K4169合金,其650℃拉伸强度为1000MPa、屈服强度850MPa、拉伸塑性15%;650℃,620MPa应力下的持久寿命为200小时。已用于制作航空发动机中的扩压器机匣及航天发动机中各种泵用复杂结构件等。

第二类:在650~950 ℃使用的等轴晶铸造高温合金 这类合金在高温下有较高的力学性能及抗热腐蚀性能。例如K419合金,950℃时,拉伸强度大于700MPa、拉伸塑性大于6%;950℃,200小时的持久强度极限大于230MPa。这类合金适于用做航空发动机涡轮叶片、导向叶片及整铸涡轮。

第三类: 在950~1100℃ 使用的定向凝固柱晶和单晶高温合金 这类合金在此温度范围内具有优良的综合性能和抗氧化、抗热腐蚀性能。例如DD402单晶合金,1100℃、130MPa的应力下持久寿命大于100小时。这是国内使用温度最高的涡轮叶片材料,适用于制作新型高性能发动机的一级涡轮叶片。

随着精密铸造工艺技术的不断提高,新的特殊工艺也不断出现。细晶铸造技术、定向凝固技术、复杂薄壁结构件的CA技术等都使铸造高温合金水平大大提高,应用范围不断提高。

三、粉末冶金高温合金

采用雾化高温合金粉末,经热等静压成型或热等静压后再经锻造成型的生产工艺制造出高温合金粉末的产品。采用粉末冶金工艺,由于粉末颗粒细小,冷却速度快,从而成分均匀,无宏观偏析,而且晶粒细小,热加工性能好,金属利用率高,成本低,尤其是合金的屈服强度和疲劳性能有较大的提高。

FGH95粉末冶金高温合金,650℃拉伸强度1500MPa;1034MPa应力下持久寿命大于50小时,是当前在650℃工作条件下强度水平最高的一种盘件粉末冶金高温合金。粉末冶金高温合金可以满足应力水平较高的发动机的使用要求,是高推重比发动机涡轮盘、压气机盘和涡轮挡板等高温部件的选择材料。

四、氧化物弥散强化(ODS)合金

是采用独特的机械合金化(MA)工艺,超细的(小于50nm)在高温下具有超稳定的氧化物弥散强化相均匀地分散于合金基体中,而形成的一种特殊的高温合金。其合金强度在接近合金本身熔点的条件下仍可维持,具有优良的高温蠕变性能、优越的高温抗氧化性能、抗碳、硫腐蚀性能。

目前已实现商业化生产的主要有三种ODS合金:

MA956合金 在氧化气氛下使用温度可达1350℃,居高温合金抗氧化、抗碳、硫腐蚀之首位。可用于航空发动机燃烧室内衬。

MA754合金 在氧化气氛下使用温度可达1250℃并保持相当高的高温强度、耐中碱玻璃腐蚀。现已用于制作航空发动机导向器蓖齿环和导向叶片。

MA6000合金 在1100℃拉伸强度为222MPa、屈服强度为192MPa;1100℃,1000小时持久强度为127MPa,居高温合金之首位,可用于航空发动机叶片。

五、金属间化合物高温材料

金属间化合物高温材料是近期研究开发的一类有重要应用前景的、轻比重高温材料。十几年来,对金属间化合物的基础性研究、合金设计、工艺流程的开发以及应用研究已经成熟,尤其在Ti-Al、Ni-Al和Fe-Al系材料的制备加工技术、韧化和强化、力学性能以及应用研究方面取得了令人瞩目的成就。

Ti3Al基合金(TAC-1),TiAl基合金(TAC-2)以及Ti2AlNb基合金具有低密度(3.8~5.8g/cm3)、高温高强度、高钢度以及优异的抗氧化、抗蠕变等优点,可以使结构件减重35~50%。 Ni3Al基合金,MX-246具有很好的耐腐蚀、耐磨损和耐气蚀性能,展示出极好的应用前景。Fe3Al基合金具有良好的抗氧化耐磨蚀性能,在中温(小于600℃)有较高强度,成本低,是一种可以部分取代不锈钢的新材料。

六、环境高温合金

在民用工业的很多领域,服役的构件材料都处于高温的腐蚀环境中。为满足市场需要,根据材料的使用环境,归类出系列高温合金。

1、 高温合金母合金系列

2、 抗腐蚀高温合金板、棒、丝、带、管及锻件

3、 高强度、耐腐蚀高温合金棒材、弹簧丝、焊丝、板、带材、锻件

4、 耐玻璃腐蚀系列产品

5、 环境耐蚀、硬表面耐磨高温合金系列

6、 特种精密铸造零件(叶片、增压涡轮、涡轮转子、导向器、仪表接头)

7、 玻棉生产用离心器、高温轴及辅件 8、 钢坯加热炉用钴基合金耐热垫块和滑轨

9、 阀门座圈

10、 铸造“U”形电阻带

11、 离心铸管系列

12、 纳米材料系列产品

13、 轻比重高温结构材料

14、 功能材料(膨胀合金、高温高弹性合金、恒弹性合金系列)

15、 生物医学材料系列产品

16、 电子工程用靶材系列产品

17、 动力装置喷嘴系列产品

18、 司太立合金耐磨片

19、 超高温抗氧化腐蚀炉辊、辐射管。

高温合金是什么材料

镍基高温合金指的是以镍为基体(含量一般大于50%) 在650~1000℃范围内具有较高强度和良好抗氧化、抗腐蚀能力的高温合金材料。

镍基高温合金系列材料,被广泛地应用在航空 航天 电力工业 ?石油化工 核能 冶金 海洋船舶 环保 机械 能源 交通汽车 电子等领域。是制造航空航天发动机热端部件、工业燃气轮机、能源、交通、石油化工等高温耐蚀部件的军、民两用合金。

进口高温合金牌号:哈氏系列C-276、C-22、C-2000、C-4、B-3、G-30、ALLOY59、Inconel600、Inconel601、Inconel625、Inconel718、Inconel X750、Incoloy800、Incoloy800H、Incoloy800HT、Incoloy825、Monel400、Monel k500、Alloy20、Alloy 28 、Alloy31、RA330、RA333、N02201、NIMONIC系列、MP35N、ELGILOY、HAYNES HR-120 / HR-160 、HAYNES 556/242/230等。

纯 镍NI201、NI200等。

变形高温合金牌号:GH1015、GH1016、GH1035、GH1040、GH1131、GH1139、GH1140、GH1180、GH1333、GH2132、GH2136、GH2696、GH2747、GH2018、GH2026、GH2036、GH2038、GH2130、GH2135、GH2136、GH2150、GH2302、GH2328、GH2706、GH2761、GH2787、GH2901、GH2903、GH2907、GH2909、GH2984、GH3128、GH3039、GH3030、GH3044、GH3536、GH3230、GH3170、GH3181、GH3600、GH3625、GH3652、GH4049、GH4090、GH4099、GH4105、GH4141、GH4145、GH4169、GH4648、GH4738、GH4202、GH4080A、GH4093、GH4098、GH4133、GH4137、GH4163、GH4199、GH4220、GH4413、GH4500、GH4586、 GH4698、 GH4708、 GH4710、 GH4720Li、GH4742、GH5605、GH5188、GH6159、GH6783等。

铸造高温合金牌号:K213 、K403 、K417、K417G、 K418 、K418B、 K423、 K424、 K438 、K465、K4169、K4163、K644、MAR-M246、MA956等 。DZ404、DZ405、DZ406、DZ408 、DZ411、 DZ417G、 DZ422 、DZ422B、DZ438G、DZ468、DZ4125、DZ4125L、DZ4951、DZ640M等。DD402、DD403、DD404、DD406、DD407、DD408、DD426、DD432、DD499等。

主要规格:无缝管、钢板、圆钢、锻件、法兰、圆环、焊管、钢带、直条、丝材及配套焊材、圆饼、扁钢、六角棒、大小头、弯头、三通、加工件、螺栓螺母、紧固件

高温合金都有哪些制备工艺?

高温合金是指以铁、镍、钴为基,能在600℃以上的高温及一定应力作用下长期工作的一类金属材料;并具有较高的高温强度,良好的抗氧化和抗腐蚀性能,良好的疲劳性能、断裂韧性等综合性能。高温合金为单一奥氏体组织,在各种温度下具有良好的组织稳定性和使用可靠性。

1、铸造冶金工艺

目前各种先进铸件制造技术和加工设备在不断开发和完善,如热控凝固、细晶工艺、激光成形修复技术、耐磨铸件铸造技术等,原有技术水平不断提高完善从而提高各种高温合金铸件产品的质量一致性和可靠性。

不含或少含铝、钛的高温合金,一般采用电弧炉或非真空感应炉冶炼。含铝、钛高的高温合金如在大气中熔炼时,元素烧损不易控制,气体和夹杂物进入较多,所以应采用真空冶炼。为了进一步降低夹杂物的含量,改善夹杂物的分布状态和铸锭的结晶组织,可采用冶炼和二次重熔相结合的双联工艺。冶炼的主要手段有电弧炉、真空感应炉和非真空感应炉;重熔的主要手段有真空自耗炉和电渣炉。

固溶强化型合金和含铝、钛低(铝和钛的总量约小于4.5%)的合金锭可采用锻造开坯;含铝、钛高的合金一般要采用挤压或轧制开坯,然后热轧成材,有些产品需进一步冷轧或冷拔。直径较大的合金锭或饼材需用水压机或快锻液压机锻造。

2、结晶冶金工艺

为了减少或消除铸造合金中垂直于应力轴的晶界和减少或消除疏松,近年来又发展出定向结晶工艺。这种工艺是在合金凝固过程中使晶粒沿一个结晶方向生长,以得到无横向晶界的平行柱状晶。实现定向结晶的首要工艺条件是在液相线和固相线之间建立并保持足够大的轴向温度梯度和良好的轴向散热条件。此外,为了消除全部晶界,还需研究单晶叶片的制造工艺。

3、粉末冶金工艺

粉末冶金工艺,主要用以生产沉淀强化型和氧化物弥散强化型高温合金。这种工艺可使一般不能变形的铸造高温合金获得可塑性甚至超塑性。

4、强度提高工艺

⑴固溶强化

加入与基体金属原子尺寸不同的元素(铬、钨、钼等)引起基体金属点阵的畸变,加入能降低合金基体堆垛层错能的元素(如钴)和加入能减缓基体元素扩散速率的元素(钨、钼等),以强化基体。

⑵沉淀强化

通过时效处理,从过饱和固溶体中析出第二相(’、"、碳化物等),以强化合金。‘相与基体相同,均为面心立方结构,点阵常数与基体相近,并与晶体共格,因此相在基体中能呈细小颗粒状均匀析出,阻碍位错运动,而产生显著的强化作用。’相是A3B型金属间化合物,A代表镍、钴,B代表铝、钛、铌、钽、钒、钨,而铬、钼、铁既可为A又可为B。镍基合金中典型的‘相为Ni3(Al,Ti)。’相的强化效应可通过以下途径得到加强:

①增加‘相的数量;

②使’相与基体有适宜的错配度,以获得共格畸变的强化效应;

③加入铌、钽等元素增大’相的反相畴界能,以提高其抵抗位错切割的能力;

④加入钴、钨、钼等元素提高‘相的强度。"相为体心四方结构,其组成为Ni3Nb。因"相与基体的错配度较大,能引起较大程度的共格畸变,使合金获得很高的屈服强度。但超过700℃,强化效应便明显降低。钴基高温合金一般不含相,而用碳化物强化。

高温合金的制造工艺

不含或少含铝、钛的高温合金,一般采用电弧炉或非真空感应炉冶炼。含铝、钛高的高温合金如在大气中熔炼时,元素烧损不易控制,气体和夹杂物进入较多,所以应采用真空冶炼。为了进一步降低夹杂物的含量,改善夹杂物的分布状态和铸锭的结晶组织,可采用冶炼和二次重熔相结合的双联工艺。冶炼的主要手段有电弧炉、真空感应炉和非真空感应炉;重熔的主要手段有真空自耗炉和电渣炉。

固溶强化型合金和含铝、钛低(铝和钛的总量约小于4.5%)的合金锭可采用锻造开坯;含铝、钛高的合金一般要采用挤压或轧制开坯,然后热轧成材,有些产品需进一步冷轧或冷拔。直径较大的合金锭或饼材需用水压机或快锻液压机锻造。

合金化程度较高、不易变形的合金,目前广泛采用精密铸造成型,例如铸造涡轮叶片和导向叶片。为了减少或消除铸造合金中垂直于应力轴的晶界和减少或消除疏松,近年来又发展出定向结晶工艺。这种工艺是在合金凝固过程中使晶粒沿一个结晶方向生长,以得到无横向晶界的平行柱状晶。实现定向结晶的首要工艺条件是在液相线和固相线之间建立并保持足够大的轴向温度梯度和良好的轴向散热条件。此外,为了消除全部晶界,还需研究单晶叶片的制造工艺。

粉末冶金工艺,主要用以生产沉淀强化型和氧化物弥散强化型高温合金。这种工艺可使一般不能变形的铸造高温合金获得可塑性甚至超塑性。

综合处理高温合金的性能同合金的组织有密切关系,而组织是受金属热处理控制的。高温合金一般需经过热处理。沉淀强化型合金通常经过固溶处理和时效处理。固溶强化型合金只经过固溶处理。有些合金在时效处理前还要经过一两次中间处理。固溶处理首先是为了使第二相溶入合金基体,以便在时效处理时使、碳化物(钴基合金)等强化相均匀析出,其次是为了获得适宜的晶粒度以保证高温蠕变和持久性能。

固溶处理温度一般为1040~1220℃。目前广泛应用的合金,在时效处理前多经过1050~1100℃中间处理。中间处理的主要作用是在晶界析出碳化物和膜以改善晶界状态,与此同时有的合金还析出一些颗粒较大的相与时效处理时析出的细小相形成合理搭配。时效处理的目的是使过饱和固溶体均匀析出相或碳化物(钴基合金)以提高高温强度,时效处理温度一般为700~1000℃。

高温合金铸造的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于高温合金铸造工艺模拟仿真、高温合金铸造的信息别忘了在本站进行查找喔。